

Predicting the response of ecologically and economically significant oysters to climate change

John Wright ^{a*}, Wayne O'Connor ^b, Pauline Ross ^a & Laura Parker ^a

^a School of Natural Sciences, University of Western Sydney, Australia. ^b Port Stephens Fisheries Institute, New South Wales Primary Industries, Australia.

Background

As a consequence of sequestration of increasing atmospheric CO₂, it has been suggested that ocean acidification will occur, threatening the biodiversity and survival of marine organisms and ecosystems which may be unable to adapt to the rate of CO_2 absorption which exceeds that of any other time on the planet^{1,2,5}. To date, studies have found a range of negative impacts of elevated CO_2 on oysters and other molluscs including:

• a reduction in calcification and growth^{1,2,3}

 a reduction in reproductive capacity and population recruitment⁴

•disturbances in the energy metabolism and acid-base status of adults^{1, 5,6}

The extent of these impacts being greater in the presence of elevated temperature^{7,8} and yet differing, even between closely related species. Among Ostreids, Parker et al., (2010) examined the effects of elevated CO₂ and temperature on two ecologically significant oyster species, the effect size being greater for the Sydney rock oyster, Saccostrea glomerata than for the more resilient and robust Pacific oyster, Crassostrea gigas.

Research Issue

The reasons for species-specific differences of S.glomerata and C.gigas and the robustness in response of *C.gigas* are not understood. Most recently it has been suggested that marine organisms with greater metabolic rate and feeding efficiency may be resilient to the impacts of climate change⁹. Previous studies have found that the metabolic efficiency and feeding rate of adult *C.gigas* was greater than S.glomerata under ambient conditions¹⁰, but it is unknown how metabolic rate and feeding efficiency will be altered under elevated CO_2 and temperature.

Hypothesis: If S.glomerata and C.gigas are exposed to elevated pCO_2 and temperature then there will be a difference in the metabolic efficiency and feeding rate of S.glomerata and C.gigas.

Deciphering the underlying physiological mechanisms through which mollusc species will respond to climate change stress will enable "climate proofing" of our significant aquacultural industries world wide.

Methodology

Figure 5: Standard Metabolic Rate

Treatment (ppm/°C)

Results

Clearance Rate

Interim results show a significant difference in the mean cells remaining after 60 minutes between temperature treatments (28°C > 22°C; P < 0.05). There was a trend for less clearance of cells at elevated temperature, and at 22°C C.gigas cleared more cells than S. glomerata. (Figure 4).

Standard Metabolic Rate

There was no significant difference between species (Figure 5).

Haemolymph pH

A species x CO_2 interaction was present. was a significant difference There between species at elevated CO_2 (385ppm > 1000ppm).C.gigas had a lower haemolymph pH than S.glomerata (Figure 6).

Oysters were exposed to ambient and elevated CO_2 and temperature treatments, simulating current and predicted near-future² oceanic conditions (Figure 3; Photos 1 & 2).

Physiological parameters including clearance rate¹⁰, absorption efficiency¹⁰, oxygen consumption^{7,10}, excretion rate¹¹, oxygen: nitrogen ratio¹⁰, haemolymph pH^{7,10}, condition index¹⁰ and scope for growth¹⁰ were compared between treatments and species using a 3-factor orthogonal analysis of variance.

Absorption Efficiency

There was no significant effect of treatment on the absorption efficiency between species.

Scope for Growth

Scope for growth will be determined once the remaining physiological parameters are finalised.

Significance and Outcomes

1. A measure of the synergistic impact of elevated CO_2 and temperature on the metabolic efficiency and feeding rate of the Sydney rock and Pacific oysters will determine some of the mechanisms associated with the more resilient and robust response in *C.gigas*.

2. Recommendation to aquaculture industries on which species of oysters will be more resilient to climate change stressors.

Figure 1: Experimental Temperature 22 °C 28 °C 22 °C 28 °C 22 °C 28 °C 22 °C 28 °C

3. Integration and communication of research findings to the aquaculture and fisheries industries for consideration into the NSW Oyster Industry Sustainable Aquaculture Strategy ("OISAS").

Photos 2 and 3: Laboratory set-up

*John Wright j.wright@uws.edu.au

design

Acknowledgements

This project was possible thanks to NSW Primary Industries. This research was supported by a scholarship grant from the National Climate Change Research Facility. John Wright was supported by a student scholarship from the University of Western Sydney.

References

- Michaelidis, B, Ouzounts, C, Paleras, A & Pörtner, H-O, 2005, 'Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels *Mytilus galloprovincialis*', *Marine Ecology Progress Series*, vol. 293, pp. 109–118
- Orr, JC, Fabry, VJ, Aumont, O, Bopp, L, Doney, SC, & Feely, RA, et al, 2005, 'Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms', Nature, vol. 437, pp. 681-686
- Gazeau, F, Quiblier, C, Jansen, JM, Gattuso, J-P, Middelburg, JJ & Heip, C, et al, 2007, 'Impact of elevated CO₂ on shellfish calcification', *Geographical Research Letters*, vol. 34, no. 7, L07603, doi:10.1029/2006GL028554
- Kurihara, H, Asai, T, Kato, S & Ishimatsu, A, 2008a, 'Effects of elevated pCO₂ on early development in the mussel *Mytilus* galloprovincialis', Aquatic Biology, vol. 4, pp. 225-233
- Pörtner, HO & Reipschläger, A, 1996, 'Ocean disposal of anthropogenic CO₂: physiological effects on tolerant and intolerant animals', In: Ormerod B & Angel M (ed.), *Ocean Storage of Carbon Dioxide*, Massachusetts Institute of Technology and International Energy Agency, Greenhouse Gas R & D Programme, Cheltenham/ Boston, pp. 57–81
- Lannig, G, Eilers, S, Pörtner, H-O, Sokolova, IM & Bock, C, 2010, Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response', Marine Drugs, vol. 8, no. 8, pp. 2318-2339
- Parker, LM, Ross, PM & O'Connor, WA, 2010, 'Comparing the effect of elevated pCO₂ and temperature on the fertilization and early development of two species of ovsters', Journal of Experimental Marine Biology, in press
- Parker, LM, Ross, PM & O'Connor, WA, 2009, 'The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850)', Global Change Biology, vol. 15, no. 9, pp. 2123-2136
- Parker, LM, Ross, PM & O'Connor, WA, 2011, 'Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification', Journal of Experimental Marine Biology, vol. 158, pp. 689-697
- Bayne, BL, Svenssson, S & Nell, JA, 1999, 'The physiological basis for faster growth in the Sydney rock oyster, *Saccostrea glomerata*', *The Biological Bulletin*, vol. 197, pp. 377-38
- Solonano, L, 1969, 'Determination of ammonia in natural waters by the phenolhypochlorite method', *Limnology* &Oceanography, vol. 14, pp. 799-801